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We present a set of heuristic rules for algebraic solution of angular 
momentum recoupling problems. The general problem reduces to that 
of finding an optimal path from one binary tree (representing the 
angular momentum coupling scheme for the reduced matrix element) 
to another (representing the sub-integrals and spin sums to be done). 
The method lends itself to implementation on a microcomputer, and we 
have developed such an implementation using a dialect of LISP. We 
describe both how our code, called RACAH, works and how it appears 
to the user. We illustrate the use of RACAH for several transition and 
scattering amplitude matrix elements occurring in atomic, nuclear, and 
particle physics. 0 1992 Academic Press, Inc. 

I. INTRODUCTION 

The next generation of computational aids for theoretical 
scientists has already begun to emerge, and it includes 
computer codes which can perform symbol manipulation 
as well as ordinary numerical computation. Software like 
MACSYMA [l] and REDUCE [2] have been capable for 
some time of carrying out symbolic computations in higher 
(college level) mathematics. 

In addition to merely speeding up work and making it 
more accurate, symbolic computing, like numerical com- 
puting, can have more profound effects. As an example, with 
its built-in ability to evaluate traces of products of Dirac 
gamma matrices, REDUCE has had a significant effect on 
the progress, as well as the accuracy, of relativistic quantum 
electrodynamic calculations and the experiments to which 
they relate. 

Until recently, the power necessary to handle symbol 
manipulation codes has not been available on microcom- 
puters. The developments of more efficient meta-languages 
for writing such codes and of faster and larger “personal” 
computers, however, have converged to provide this power. 

Microcomputer versions of codes such as Mathematics [3] 
and MAPLE [4] are now being put to practical use. 

In this paper we present a code-RACAH-for carrying 
out manipulations within the specialized physics domain of 
quantum angular momentum algebra. RACAH is effectively 
an expert system for solving angular momentum recoupling 
problems. It is naturally applied to the evaluation of 
reduced matrix elements for the types of operators found in 
typical quantum mechanical applications. The code has 
been developed in PC SCHEME [S], a compact dialect of 
LISP, and it runs on MS-DOS microcomputers [6]. 

Section II of this paper presents our motivations for devel- 
oping the RACAH code. This is followed by a brief review of 
Racah algebra, which also serves to define the conventions 
we use. Section IV presents the paradigm problem, the 
evaluation of a quantum amplitude or “matrix element” in 
terms of simpler “irreducible invariant matrix elements.” 
The representation of this process in terms of manipulations 
on a binary tree makes it particularly compatible to solution 
of the problem using the LISP programming language. The 
logic of the LISP code will be presented in Section V, which 
also discusses the heuristic rules we have incorporated in the 
code to attempt to produce a minimal recoupling result. 
Section VI shows how the code looks to a user and gives 
examples of non-trivial recoupling problems from atomic, 
nuclear, and particle physics. Section VII summarizes and 
indicates potential future extensions and generalizations. 

II. MOTIVATION AND SCOPE 

Angular momentum is a vector quantity which has both 
its length and one component quantized. Its conservation 
necessitates dealing with the algebra of quantized angular 
momenta whenever one calculates amplitudes for 
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scattering, reactions, and decays in atomic, molecular, 
nuclear, and particle physics. The theoretical basis of 
angular momentum theory is presented in great detail by 
Biedenharn and Louck [7]. It is presently learned as a 
practical skill from textbooks such as those of Rose [S], 
Edmonds [9], or Fano and Racah [lo]; we follow the 
notation and conventions of Edmonds in this paper. 

The nature of angular momentum recoupling computa- 
tions is straightforward although often quite tedious and 
time consuming. Problems in computing accurately the 
phase resulting from angular momentum recoupling 
provided a partial motivation for the development of 
graphical techniques to simplify angular momentum 
recoupling problems [ 111. 

Our work here is based on one of these graphical techni- 
ques. Danos [ 121 has worked out a consistent set of delini- 
tions of tensors used within Racah algebra which greatly 
reduces the phase difficulties and which allows a graphical 
representation of the recoupling process leading directly to 
the final algebraic result. This technique allows a quick 
representation of one or several possible recoupling paths 
which produce a desired re-expression of a quantum 
amplitude but does not intrinsically suggest minimal 
solutions [ 13 J. 

We use the Danos graphical technique as a beginning 
point for a computerized attack on the angular momentum 
recoupling problem. While lacking the generality of the 
complete Racah algebra (which the Danos scheme 
possesses), the RACAH code further reduces the tedium 
of the recoupling algebra. Our efforts are directed at the 
problem of calculating quantum amplitudes-products of 
an initial quantum state, a tensor interaction operator, and 
a conjugated final quantum state, coupled together to a net 
angular momentum of zeroAxpressed in terms of simpler 
products of two, three, or four angular momenta coupled by 
themselves to zero. 

The restriction here to the evaluation of angular momen- 
tum matrix elements means that we ignore certain kinds of 
activities for which the Racah algebra is often used. For 
example, we have little to say about identities among sums 
and products of 3j, 6j, and 9j symbols, often used to simplify 
intermediate results of recouplings. The computer techni- 
ques we discuss here attempt to derive minimal solutions to 
the recoupling calculations, which preclude the need for 
such Racah identities. 

On the positive side, the RACAH code allows use of a 
standard set of definitions for spherical harmonics and ten- 
sor products [ 141, and the results it derives are, in a great 
number of cases, expressed in the most concise algebraic 
form. The user should be able to move from a statement of 
the problem expressed in the common language of his or her 
discipline and receive from RACAH a minimal result, also 
expressed in common language, with the details of the inter- 
mediate calculations invisible. We believe that this feature 

alone will make RACAH useful, particularly to infrequent 
users of angular momentum techniques who do not wish to 
learn a new technology in order to obtain just one or two 
straightforward results. Also, the existence of this code may 
well make some very large recoupling problems tractable, 
thus making it attractive as well to more frequent and 
sophisticated users of Racah algebra. 

III. ANGULAR MOMENTUM ALGEBRA-A BRIEF 
REVIEW 

The basic operation within angular momentum algebra is 
one in which two states, each of which has a quantized value 
of its total angular momentum and one component (by 
convention, the z-component), are combined to produce 
a system with a total angular momentum and its 
z-component, also properly quantized. 

We adopt the notation of Dirac and refer to quantum 
state vectors-“kets”-using the symbol lj, m). This 
represents a normalized state vector, an eigenfunction of 
the square of the total angular momentum operator, J* 
(with eigenvalue j(j+ 1)) and an eigenfunction of the 
z-component, J, (with eigenvalue m.) Should the state be 
composite, with the total angular momentum comprised of 
sums of angular momenta of constituents, this construction 
shall be indicated within the brackets. A conjugated state 
appropriate for a final state vector in an amplitude will be 
denoted using the Dirac “bra,” (j’, m’l. 

When two states are combined, each can be thought of as 
retaining its total angular momentum (j) but losing its 
particular orientation (m). The combination is itself an 
eigenstate of J’ and JZ. The linear combination of product 
states which comprise the composite system is a function 
only of this property, 

IJ, M)= c (j, ml,j2m2 I JW ljl, ml > IA, mz>. (1) 
ml .m* 

The symbol (j,ml, j,m, I JM) represents a Clebschh 
Gordan coefficient. In effect, it is an overlap integral 
between the product states and the combined state of 
“good” J2 and J2. Allowed values of J and M are those for 
which M is the arithmetic sum of m, and m2, and J satisfies 
the triangularity conditions with j, and j2, 

J<j, +A, J> I~I -h 1. (2) 

We will denote this fundamental operation of coupling 
angular momentum eigenstates j, and j, to produce a com- 
bined eigenstate J by [j, j21J, and the combined eigenstate 
will be denoted by 1 [j, j,]“, ). 

As an example, consider an electron bound to a massive 
and spinless nucleus. The electron has intrinsic (“spin”) 
angular momentum equal to 4 and an orbital angular 
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momentum of I [lS]. These combine to produce the total Two possible ways of describing the two-particle system 
angular momentum j for the atom: with total angular momentum J are via L-S coupling, 

I@)= C (h, 4 m,ljm) Ih> Itm,> 
m,,m, 

55 1 [l&J. (3) 

More complicated systems require sequential application of 
this binary addition operation. In systems of more than two 
angular momenta to be coupled, the order in which we 
couple the individual components to subtotals, and sub- 
totals to final totals is crucial to the nature of the final state 
we describe. 

If we are to couple three angular momenta-j,, j, and 
j3-to a state of good angular momentum J using the 
previously defined Clebsch-Gordan coupling, there are 
three possibilities: 

CCjIj21i’2j31’; [I~j~M~“~21’; 

or CCj2j31j*‘jIl~. (4) 

Each of these ways of forming the combined state, and 
in fact each separate allowed value of the intermediate 
coupling values, leads to states which are physically 
different. While these states have the same total angular 
momentum, thy could have quite different masses, decay 
properties, magnetic dipole moments, etc. For each 
coupling scheme the set of states with various values of the 
intermediate angular momenta form a mathematically 
complete set of states for the description of any state with 
total angular momentum J made from the original three 
angular momenta j, , j?, and j,. This means any such state 
can be expressed as a linear combination of states from one 
coupling scheme. For example, 

[[j, j,]j12j,]J=C (-1)J1+i2+J?+JJ(;; Jz 

where j represents (2j + 1 )‘I’. The symbol in curly brackets 
is known as a 6-j symbol. It is defined in terms of sums of 
products of Clebsch-Gordon coefficients and can be shown 
to be completely independent of projection quantum 
numbers [9]. 

A similar situation arises in situations where four angular 
momenta are to be coupled. The simplest scheme for this 
involves coupling the individual components in pairs, and 
then joining the coupled pairs. A familar example is the 
coupling of two particles, with intrinsic angular momenta si 
and s2 and orbital angular momenta I, and 12, respectively. 

CC/l 121L cs, hlSIJ~ 

and via j-j coupling, 

(6) 

[[11 s,]” [I, s,py. (7) 

As in the case of recoupling of three items, each of these 
schemes when considered for all the allowed intermediate 
coupling values is a complete set for the description of any 
combined state of these four angular momenta summed to 
J. As a consequence, one can express an L-S coupled state 
as a linear combination of j-j cc ,u1 pled states as follows: 

The 9-j symbol, i.e., the object delimited by the curly 
brackets, can be expressed as a sum of products of 
Clebsch-Gordan coefficients and is also independent of 
projection quantum numbers [9]. 

When situations arise involving the coupling and 
recoupling of more than four angular momenta, the 
required recoupling coefficients are typically expressed in 
terms of sums of products of the 6-j and 9-j symbols. Techni- 
ques for deriving these relations using Racah algebra have 
become a standard part of the arsenal of most atomic, 
molecular, nuclear, and particle physicists. The present 
work presents an algorithm which can solve a large class of 
recoupling problems for an unrestricted number of angular 
momenta. 

IV. AMPLITUDE EVALUATION 

The specific problem within Racah algebra to be 
addressed in this paper is that of evaluation of an amplitude, 
or a matrix element, of some tensor operator between bra 
and ket states of a many-body system. The general form of 
this amplitude is 

<.& ml-l Op(jy m) lj,, mi>, (9) 

where 

1. The bra and ket represent final and initial states of 
one or more particles, with orbital (angular) and intrinsic 
(spin) angular momentum quantities coupled in a specified 
way to be eigenfunctions of J2 and J, with eigenvalues j/, m, 
and jj, mi, respectively, 
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2. The interaction operator, Op(j, m), is the mth 
spherical component of a tensor of rank j operating in the 
space of the angular and spin variables of the particles in the 
initial and final state, and 

3. The notation is intended to imply the integration 
over angular and radial variables and contraction over spin 
variables of all involved particles, making the amplitude a 
scalar-valued quantity. 

The interaction operator consists of combinations of 
operators each of which acts on the spatial or spin variables 
of a single particle [16], coupled together via summations 
over their tensor component values. These couplings, which 
often take the form of familiar operations from vector 
algebra, can be represented as combinations of binary 
Clebsch-Gordan couplings, e.g., 

a.b=& Cab]‘, (10) 

a.(axb)= -ifi [o[ab]‘]‘. (11) 

Each of the quantities in the example above-a, b, and 
o-are vectors, that is, tensors of rank one, and thus carry 
the value of unity into the appropriate Clebsch-Gordan 
coefftcient, with possible projection values of m = + 1, 0, 
and -1. 

The summation and integration of variables in the defini- 
tion of the amplitude assure that the overall coupling (ofj,, 
j, andj,) is to an angular momentum of zero. This particular 
coupling of three angular momenta to zero, is known as the 
“invariant triple product” and is independent of the internal 
coupling scheme. Interchange of the order of the elements 
can change at most the overall sign. 

The dependence of the amplitude of Eq. (9) upon projec- 
tion operators is rather trivial, and can be separated from 
the more difficult parts of the calculation by use of the 
Wigner-Eckart theorem, 

Of, mfl OP(j, m) lj,, mi> 

(-1)” 
=- (./imi,.bljfmf>Cjf lljlljil. 

$ 
(12) 

The quantity [jr llj/l j,], known as the “reduced matrix 
element,” is independent of the projection quantum 
numbers m,-, m, and mi. This expression, which includes a 
collection of three or more angular momenta coupled to a 
net value of zero, is at worst a weighted sum of radial 
integrals, with weight factors which are sums of products of 
Clebsch-Gordan coefficients, 6-j and 9-j symbols. 

The problem to be addressed is that of symbolically 

evaluating the reduced matrix element in terms of elemen- 
tary reduced matrix elements involving the spin or angular 
variables for a single particle. Each of the elementary 
reduced matrix elements, since its individual angular 
variables are integrated or its spin values are contracted 
appropriately, also represents a set of angular momenta 
coupled to zero. Examples of the most common of these 
elementary reduced matrix elements are: 

UII 1 lljl~ Cjlljl=i 
CiII c llal=& 

c&II y, II Y,l=- g (IjO, 10 1 l,O), 

c y,, II y,, y,, 1” II y/4 1 = c YI, II c yLj YI, 1” II Y!, 1 
i;‘i;‘c 

=7 <Lt~,~~l~,~) 

x (l,O,1,O)xO). 

(13) 

(14) 

(15) 

(16) 

Other such identities can be derived by straightforward 
evaluation of the indicated matrix element and use of the 
Wigner-Eckhart theorem. 

The RACAH code calculates the reduced matrix element 
as defined in Eq. (12). Results are presented in terms of sums 
of products of phases, algebraic factors (typicaly products of 
“hat” symbols likej), 6-j symbols, 9-j symbols, and elemen- 
tary reduced matrix elements. Trivial elementary reduced 
matrix elements (such as [ jll 1 l/j]) are automatically 
included in the algebra produced by the code; more com- 
plicated elementary reduced matrix elements are presented 
symbolically, to be specified by the user. Radial integrals 
and other factors which, while not explicitly involved in the 
recoupling process, might carry dependence upon angular 
momentum values are also to be incorporated into the final 
result by the user. These factors can be formally considered 
as part of the elementary reduced matrix elements for 
angular variables. 

V. LOGIC OF THE CODE RACAH 

It is clearly possible to present the fundamental 
Clebsch-Gordan coupling as a elementary binary tree, e.g., 

C4bY-t /\ (17) 
a b 

Based on this identification, any coupling of several angular 
momenta to a single value can be represented by a corre- 
sponding binary tree structure, e.g., 
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P 
/“\r 

-/\ /\ (18) 
a b q 

C 

/e\d 

Properties of the Clebsch-Gordan coefficient assure that the 
coupling of an angular momentum to a normalized entity of 
zero angular momentum simply yields the original angular 
momentum, 

[a 01” = [O a]“= a. (19) 

One can, therefore, add to any bottom vertex in the binary 
tree represention two branches, one of zero and the other of 
value identical to that of the vertex. This allows any binary 
tree representation of an angular momentum coupling to be 
transformed into a “balanced” binary tree-with all roots 
of equal length-representing a mathematically identical 
algebraic structure. For example, the coupling of Eq. (19) 
can be represented as a balanced binary tree as 

C[Ia blP Cq Cc ~1’1’1” 

+ 
a b 4 e 

a 
/ \. b/ \. 

4 
/ \. / \d 

C 

(20) 

As a matter of convention, when zeros are added, they will 
be added to the right branch. 

There are two basic operations upon binary trees in this 
presentation. First, at any vertex not at the bottom of a tree, 
one can interchange the two roots. This corresponds to the 
algebraic identity 

[ab]‘=(-l)a+h~c [ba]“, (21) 

and thus when this “switch” operation is done, the 
appropriate phase must be included in the algebraic result. 
Second, at any vertex at least two levels up from the bottom 
of a tree, one can interchange the center two 
“grandchildren” of the vertex, 

z z 

/\ /\ 
X Y -+ P 4 

a 
/ \ /- \d /- \ / ld 

b c a c b 

(22) 

This corresponds to 

[[a b]” [c d-j”]’ 

a b x 
=I ,$+j c d y [[a~]~ [bdlY]= (23) 

P.4 
1 i P 4 z 

(as in Eq. (8)), and thus when the “9-j” operation is done, 
the result is altered by the inclusion of two summations, a 
product of square root factors, and one 9-j symbol. 

The 6-j transformation is a special case of the 9-j transfor- 
mation, 

[[a b]” c]” = [[a b]’ [c O]‘]’ 

abx 

= c aqb 

1 1 

c 0 c [[ac]P[bO]b]z (24) 
P pbz 

with 

(25) 

Thus, in discussions of transformations of balanced binary 
trees it will not be treated as a distinct operation. The dis- 
appearance of one of the summation variables is due to the 
triangularity relation involving a zero. It is clear from com- 
parison of Eqs. (5) and (24) that the 6-j symbol is, up to a 
constant, the same as a 9-j symbol with a single zero value. 

It is also true that the “switch” is another special case of 
the 9-j operation, but involving two zeros: 

[a b]‘= [ [0 a]” [b O]“]= 

0 a a 
=Ci2fi2 b 0 b [[Ob]b[aO]“]= 

i i b a z 

=(-l)U+h--c[ba]i. (26) 

Here both summations disappear due to triangularity rela- 
tions involving zeros, and the 9-j symbol with two (or more) 
zeros is seen to reduce to a simple algebraic product. 
Despite the redundancy of the “switch” operation with such 
a 9-j symbol, the discussion which follows treats the 
“switch” as a distinct operation. 

In the language of binary trees, the problem of recoupling 
can be described as a transformation from one binary tree to 
another. Let Tree-l be a balanced binary tree representing 
the reduced matrix element as originally coupled. Its top- 
most vertex has value zero and the bottom vertices are 
denoted by fundamental angular momentum labels or zeros. 
The vertices in between represent intermediate angular 
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momentum couplings and have values consistent with the 
triangle inequalities. 

The target, Tree-2, represents the amplitude recoupled 
into elementary reduced matrix elements. It is another 
balanced binary tree of the same size as the first, with the 
topmost vertex also having value zero. The bottom vertices 
of Tree-2 are exactly the same as those of Tree-l but in a 
different sequence. Vertices between the top and bottom 
rows will either have value zero (due to triangularities in the 
elementary reduced matrix elements), or will acquire values 
from summations introduced or triangularities enforced 
during the recoupling process. 

The problem addressed by code RACAH is to move from 
Tree-l to Tree-2 using the two allowed moves “switch” and 
“9-j” applied at any vertex, as often as necessary. An 
optimal solution is one in which the resulting algebraic 
expression is as simple as possible. 

The notion of “simplicity” here is not a matter of univer- 
sal agreement. As an example, consider a recoupling which 
can be expressed by a single 9-j recoupling. This could also 
be accomplished by a path which reduces to three 6-j 
recouplings and one summation. While many practitioners 
have a clear preference for the result expressed as a single 9-j 
symbol, the two results are mathematically identical to one 
another, and a numerical evaluation of the summed 6-j’s 
will be just as quick as an evaluation of the 9-j symbol. 

In the set of heuristic rules which drives RACAH, the 
general scoring rules are as follows: 

1. The “switch” move, since it contributes at most a 
sign change to the overall amplitude, is considered free and 
is done whenever convenient-its cost is zero units. 

2. The “9-j” move is carried out at a cost of three 
units if it has nine non-zero vertices, a cost of one unit if only 
if one vertex has value zero, and with zero cost if two or 
more vertices have value zero. 

With these rules, a possible solution to the recoupling 
problem would be to investigate a large class of solutions, 
score each, and choose the one of lowest cost. For 
interesting problems involving even a modest number of 
angular momenta the class of solutions to be investigated 
becomes so large that such a method would be prohibitively 
slow. The alternative chosen here, which produces a code 
which can be used effectively on microcomputers, is to 
develop a set of heuristic rules based upon solution techni- 
ques which produce optimal results in a large number of 
cases. These cases have been selected from several textbooks 
and research problems in the fields of atomic, nuclear, and 
particle physics. 

When using RACAH, a series of queries leads the user to 
inform the program of the exact definition of the amplitude 
(Tree-l) and then the desired recoupled states (Tree-2). 
The user builds up the tree for the original amplitude by 

describing successive couplings, the total eventually coupled 
to zero. Then the elements in the elementary reduced matrix 
elements are given-this fully specifies Tree-2 [ 171. Given 
this information, the two binary trees are constructed, and 
the process of transforming the tree of Tree-l into Tree-2 is 
initiated. 

As a preconditioning of Tree-l, a 9-j may be carried out 
at the top vertex if this introduces (via triangularity) new 
zeros at the two vertices immediately below the apex. This 
check is made in recognition of the fact that often the total 
interaction operator (e.g., a Hamiltonian) is itself coupled 
to zero, and in this case, the most efficient recoupling is done 
if the original coupling is described as 

[[(initial state)& (final state)“]’ (interaction)‘]’ (27) 

rather than 

[(final state)* [interaction)’ (initial state)‘<lJi]‘. (28) 

Another preconditioning occurs for Tree-2, representing 
the elementary reduced matrix elements. These commute 
with one another, since each separately couples to zero. The 
code takes advantage of this commutivity by picking an 
ordering of the subtrees within Tree-2 so that its root (the 
left-to-right ordered list of elements across the bottom row 
of the tree) best matches the ordering of the root of Tree-l. 
This should reduce the amount of recoupling necessary to 
transform Tree-l into Tree-2. 

After preconditionings, the main part of the algorithm is 
entered. The procedure loops through the vertices of Tree-l, 
starting with the apex (vertex l), moving to the vertex down 
and to the left (vertex 2), then the one immediately to the 
right (vertex 3). Things continue this way, left to right, top 
to bottom until the right-most element, two rows from the 
bottom (vertex 2” ~ ’ - 1 for a tree of n horizontal rows) is 
reached. At each vertex m, the code examines the results of 
three possible actions: 

1. No change, leave existing tree intact; 
2. Perform a 9-j transformation at vertex m; 

3. Perform a switch on vertex 2m (immediately down 
and to the left), followed by a 9-j at vertex m. 

These three options (if followed by appropriate switches at 
lower vertices) represent all possible reorderings of the four 
“grandchildren” of the vertex being considered. 

As each option is considered, the root of the tree in its 
present state is compared with the desired final form, i.e., the 
root of Tree-2. A “goodness of fit” value is assigned to that 
option. The algorithm giving the goodness-of-fit value is the 
controlling element of the whole code and encodes the 
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accumulated experience of the “experts” who have con- 
tributed to this project. Goodness of fit depends upon how 
many elements in a particular sub-root of the whole tree 
match with a similar sub-root of Tree-2. The algorithm also 
examines the zeros in the root, assigning a Iit value sensitive 
to the eventual goal root and the locations of its zeros. It is 
this treatment of zeros which causes the code to favor 9-j 
switches with zeros to those without. This led to the 3 :l: 0 
scoring ratio discussed earlier for the 9-j: 6-j: swirch actions. 

The action at vertex m which produces the maximum 
goodness of fit value is then carried out, and consideration 
moves on to vertex m + 1, where the process is repeated. 
Once all the appropriate vertices have been so examined, 
the process returns to vertex 1 and loops through the tree 
(as reordered) once again. When the root of the altered 
Tree-l configuration matches that of Tree-2, the process is 
complete. It only remains to collect the sums, phases, j 
factors, and 9-j symbols resulting from the operations which 
have brought about this match. This represents the general 
recoupling coefficient for this process and is the desired 
result. 

The procedure described above represents a heuristic 
solution to the problem of the minimal recoupling result. 
When the code produces a result, it is always a correct 
result, although not necessarily a minimal one. In many 
cases which have been tested, the result is indeed minimal. 
In cases which produce a non-minimal result, a rearrange- 
ment of the order of coupling of the initial amplitude usually 
helps RACAH to find a simpler and often minimal solution. 
There is also the possibility that a solution might not be 
found. If the code loops through the whole tree without 
making any transformations, a stalemate is declared and 
processing halts. In the few such cases examined so far, a 
rearrangement of the statement of the problem has 
produced efficient solutions. 

When two equivalent statements of a recoupling problem 
cause RACAH to produce non-identical results, the code 
has derived a Racah algebra identity. Such identities have 
been interesting in the past [IS], since they allowed reduc- 
tion of complex recoupling results to more economical 
representations. Since the intention of RACAH is to 
produce minimal (or near-minimal) results from the algo- 
rithm, the more complex identities are of little interest, 

A limitation of the present version of RACAH is that the 
elementary reduced matrix elements can contain a maxi- 
mum of four angular momentum entities. For instance, in 
evaluation of a single-particle amplitude for a spin-4 par- 
ticle, the code can easily handle an interaction like (r . Xo . Y, 
which would lead to the elementary reduced matrix element 
for spin of [Sf 11 [a a]“ll S,]. However, it cannot presently 
deal with the interaction (r. Aa. Bo . C. This limitation will 
on occasion require some preliminary recoupling of parts 
of the original amplitude before use of RACAH. This 
preliminary recoupling can be done using RACAH as well, 

but it is often transparently simple and can be done by hand. 
For example, in the above case, use of the identity 

CC@ AlO Cc ~l”l” 
1 1 0 

= c 2-z 

r 1 

1 1 0 [[o 01” [A B]“]“, (29) 
.v 

X x 0 

which is identical to the more familiar 

a.Ao.B=A.B+io.AxB, (30) 

will reduce the problem to two separate pieces, each of 
which can be addressed by RACAH. 

VI. EXAMPLES OF THE USE OF RACAH 

In order to best demonstrate the power as well as the 
limitations of the code RACAH, several examples will be 
given from the fields of atomic, nuclear, and elementary par- 
ticle physics. The first of these will be given in great detail; 
those following, more tersely, but each illustrating a further 
point about how the RACAH code works. 

EXAMPLE 1. The problem is to calculate the matrix 
element of the interaction (T. x between normalized single 
particle wave functions in configuration space. The initial 
wave function, an eigenfunction of the total angular 
momentum, has the form 

IJit Mf) = 1 <limis siPi I f;“t > 

F>P< 

x f&(x> qYf> xc (31) 

The final state is of identical construction, and the inter- 
action can be cast in terms of coupled angular momenta as 
in Eq. ( 1 1 ), (r . x = fi [(T x] ‘, where the vectors n and x are 
both tensors with angular momentum 1. 

The Wigner-Eckart theorem (Eq. ( 12)) applied to this 
case gives 

x CC~fsflJ’ll Co xlo II C/i silJ’l, (32) 

where the Kronecker deltas result from triangularity 
relations applied to the matrix element as a whole. The 
Clebsch-Gordan coefficient in this example is equal to 
unity. 

The reduced matrix element from Eq. (32) can be 
evaluated using RACAH. A menu-driven interface guides 
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the user to input the original coupling scheme, which 
appears as 

[ [l,SJ~ [[a x1= [li si]J~]Jqo. (33) 

RACAH also asks the user to indicate which, if any, of the 
symbols used should have the value zero. In this case z is 
such a symbol. The user is then led to describe the sub- 
integrals and spin-sums (Tree-2, the desired end result), 
which appears as 

Finally, the variables defined by the user are displayed, and 
one can choose to give them particular non-zero numerical 
values. These values will be displayed in the final result in 
lieu of the names, but will be treated numerically only in the 
evaluation of the phase. In the present case, the two vector 
operators x and 0 should be identified with the angular 
momentum value of 1. 

With this information, the code will evaluate the reduced 
matrix element algebraically and display its result: 

x(qy2 {k ;; ?}. (34) 

The two leading factors in this expression are the elemen- 
tary reduced matrix elements, referring successively to the 
spin variables and spatial variables of the involved particle. 
If the particle has spin-i, then 

CCsfa si)l = fi. (35) 

From Eq. (15) (and remembering that x stands for angular 
momentum 1 ), 

[(lfX f,)] =lJqz (EiO, lOll,O) 

Combining the results of Eqs. (32t( 36), the final result can 
be obtained: 

<Jf, MfI b.X IJi, Mi) 
1 

= 6J,J,6,1M,( - l)J~+~+S~- 3zi (liO, 10 1 lf0) 
Jr;; 

EXAMPLE 2. The relationship between states coupled in 
various ways can be expressed using RACAH to calculate 

overlap integrals between the states-matrix elements of the 
unit operator. A straightforward example of this is given in 
Eq. (8), which shows the relationship between a two-body 
state coupled in an L-S scheme, and the state coupled in a 
j-j scheme. The problem is to find an expression for the 
coefficient CI in the equation 

=j;i, ICC/, JII” C~2~21hlJ,). (38) 

Due to the orthogonality of eigenstates of angular momen- 
tum with different eigenvalues, it is easy to solve this for the 
coefficient c(: 

cc= (CC~I s*l" t-~2~2l"l"l 1 lCC~,~21L C~,~zl"l">. 

(39) 

The Wigner-Eckart theorem in this case, like the last, has 
a Clebsch-Gordan coefficient which evaluates to unity, so 

a=; cccz1 flljl C~2~21j21J IIll1 CCllr21" C~,~21SlJ1~ (40) 

and the reduced matrix element on the right can be 
evaluated by RACAH. 

The initial coupling is described to the machine as 

[CCC $1" c~;.a"l"' CCll 121L CJ, ~*lSIJlO, (41) 

similarly, the four elementary reduced matrix elements as 

(1; 11) (~;I,) (GSI) (dJ2). 

The value produced by the code is 

(42) 

Combining this with the Wigner-Eckart theorem factor 
produces a result in agreement with Eq. (8). 

EXAMPLE 3. A more complex example from the field of 
atomic physics can be demonstrated via the evaluation of a 
particular matrix element of the Coulomb interaction of two 
electrons between three-electron states [ 191. Consider three 
electrons coupled in the following scheme 
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It is desired to find the matrix element of the Coulomb (moving with momentum q in the z direction) and a nucleon 
interaction, current, p/M, has the form 

(45) 
(49) 

between two such states. The matrix element to be evaluated 
is thus Calculating the matrix element of this operator, whether 

between multi-nucleon states or single particle states will 
([[[l\ rpzr;]“’ [[s; s;]““s;]~]J~l eventually involve the reduced matrix element of [ YLp’]” 

x c Yk@Z) Y/df,)l” 
between single particle states of good orbital angular 
momentum 

(50) 
=-j [[[Cl; I;]‘iz Z;]“’ [[s; s;]“~~s;]~‘]~II 

x Ck* ~,1°11 
To evaluate this we introduce the completeness relation for 
spherical harmonics, 

x ccc/, M”2 &IL CCJ, %ls’* ~31”lJ1. (46) 

The reduced matrix element in this relation is evaluated by 
RACAH as 

7 I^c Y’(3) Y’(P)]” = iP’(i -i’), (51) 

to separate the matrix element of a product into the product 
of two matrix elements of single operators. The evaluation 
proceeds as 

(47) c~fIlcyLPl”lI &I 

= c Uf II c yry’lo c YLPl”ll &I 
Evaluating the reduced matrix elements using Eq. (15), and 
combining Eqs. (45)-(47) leads straightforwardly to the 
complete result: 

=;mf,lYLll my’llPll Lil, (52) 
/ 

C-1) /i+l;+l3-/12-/i2- Lrz<czi;‘i: c<->” with /I being the coefficient provided by the code RACAH. 
k Providing as code input the initial coupling in the form 

x (l,O, kOJl;O)(l,O,kO)l;O) 
C~fCCC~~1° CLPYI” Lil”/1° (53) 

and the desired recouplings as 

x Jam dr2 4 jom dr3 r:f’(rd f’(rd - (54) 

EXAMPLE 4. Consideration of one of the interactions p=(-l)Lc+’ 

involved in the calculation of photon absorption on nuclei 
will demonstrate the evaluation of elementary reduced x CWfL I)lC(lP -WI. (55) 
matrix elements of product operators in a single space. The 
Hamiltonian representing the interaction between a photon The first of the two elementary reduced matrix elements on 

58 I /99/2-9 
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the right side of Eq. (55) is evaluated in accordance with coordinates of the relative motion. Similarly, the final state 
Eq. (15), and the second according to the rules [12] of the A-resonance is 

CL Ml Ll=O (56) 11 S’I s 
(ii”fi ttil = <[[CT! 21 71 

x ~~4 ~/;1~‘13/*~~~ CC4 tl’ ~l”“,,l. (62) 

The isospin amplitude can be completely factored from the 
spin-space amplitude and computed separately. The charge 
of the ith quark can be expressed in terms of the isospin 
operator r, 

Qj=e(i+ 1~6). (63) 

Since thecomplete set which was introduced was only in the 
angular variables, the remaining radial integral is only in 
one variable, and the derivative operator p in Eq. (55) 
operates only upon the initial state radial wave function. 
Which of the forms this operator takes depends, however, 
on the relationship between L, and I, not on that between Li 
and L,. Combining results from Eqs. (52) and (55) and 
using Eqs. (15), (57), and (58) to evaluate the elementary 
reduced matrix elements leads to 

EXAMPLE 5. An amplitude of interest in the low-energy 
quark model is the electric quadrupole transition amplitude 
from the three-quark state of a nucleon, to that of a A (spin 
$, isospin g) resonance. The interaction operator is the L = 2 
term from the expansion of the charge operator 

Qiei“.r = Qi A; i%(qr) Yo,(Q, (60) 

where q has been taken as the z-axis. 
The nucleon is assumed to be constructed of three quarks, 

each of isospin i, spin f, 

IJiy Mi; T;, ti> 
=I[[[~3]“~]s[p”1’*]L]J’,,: [[ff]‘+]Trt,), (61) 

where Ti = f is the total isospin of the nucleon state, Ji = 4 
is the total nucleon spin, and p and 5 are Jacobi (vector) 

The matrix element of the constant term between nucleon 
(isospin 4) and A (isospin $) vanishes, so we need only treat 
the second term. For the third quark (r + A), for example, 
the Wigner-Eckhart theorem yields 

x [[[;$]‘p* I(zI( [[+g’;]“*]. (64) 

Recoupling the reduced matrix element to the form 

(i $1 (4 t, (5 T $9 
RACAH gives 

(65) 

(66) 

The elementary reduced matrix element of r is &, as for 
the Pauli spin operator above. Combining results, using the 
explicit value of the 6-j coefficient, gives for the isospin 
matrix element 

([[;;]‘;]‘-‘I Q3 l[[;;]‘f]“2)= -9 (67) 

The remaining spin-space amplitude, 

([ [ [$ gy $1”’ [$’ ~‘q”‘]“;lj2(q/q 

x Y;(2) I [[ [$ gJs 41” [b” K’qLJJr>, (68) 

can be similarly computed, producing the overall result 

d-1) 
5 Jz j)-Lp J+S+L+L’+I,+1~+1 __ 

3 

x (JM, 201 J’M’)(120, 201&O) 

xi; “; i}(:: ; ;] 

X 
s m ~‘f’(~)j,(q~)f(~) d. (69) 

0 



AUTOMATED ANGULAR MOMENTUM RECOUPLING ALGEBRA 309 

VII. CONCLUSION REFERENCES 

When used properly, RACAH will always produce a 
correct result, and in many cases, one of minimal algebraic 
complexity. It can certainly be used to check results derived 
“by hand,” and this activity can quickly lead to a confidence 
in RACAH which will elevate it into the position of 
replacing one’s traditional techniques. RACAH’s ability to 
solve quite complex problems should enable calculations 
which have not been previously attempted because of the 
time involved in doing the angular momentum algebra. 
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2. A. C. Hearn, “REDUCE 2, A System and Language for Algebraic 
Manipulation,” in Proceedings, Second Symp. on Symbolic and 
Algebraic Manipulation, 1983. 

3. 

4. 

S. Wolfram, Mathematics: A System for Doing Mathematics by 
Computer (Addison-Wesley, Redwood City, CA, 1988); software 
available from Wolfram Research Inc., Champaign, IL. 

Software available from Waterloo Maple Software, Waterloo, 
Ontario, Canada. 

The utility of this tool to physicists in the several areas 
mentioned previously and to chemists working in the area 
of spectroscopy and atomic and molecular theory will be 
enhanced by the suggestions of users. Preliminary versions 
of the code have already been put in the hands of a few 
physicists whose work frequently involves angular momen- 
tum algebra. Our intention in this early distribution was to 
receive these persons’ reactions and to respond by further 
refining the software. A production version of the RACAH 
program is now available for serious use. Persons interested 
in using RACAH should contact one of the authors [20]. 
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prototype program to compute partial wave amplitudes for 
baryon-baryon scattering via one meson exchange. The 
Racah algbra discussed in this paper is based upon the 
SU(2) symmetry of spin (or isospin) and ordinary space 
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metries such as SU(3) could be carried out using the same 
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